
DEEP LEARNING

Lecture 8: Language Model

Dr. Yang Lu

Department of Computer Science and Technology

luyang@xmu.edu.cn

NLP Tasks using Language Model

1
Source: Kwiatkowski, Tom, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein et al. "Natural questions: a benchmark for question answering research." Transactions of the Association for Computational Linguistics 7 (2019): 453-466.

Input

Prediction

Question answering

NLP Tasks using Language Model

2
Image source: Sha, Lei, Baobao Chang, Zhifang Sui, and Sujian Li. "Reading and thinking: Re-read lstm unit for textual entailment recognition." In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2870-2879. 2016.

Textual Entailment (TE) or Natural Language Inference (NLI)

NLP Tasks using Language Model

3
Image source: Yang, Zichao, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. "Hierarchical at tention networks for document classification." In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, pp. 1480-1489. 2016.

Sentiment analysis

NLP Tasks using Language Model

4
Source: https://demo.allennlp.org/semantic-role-labeling/MjQ1MjQxOA==

Semantic role labeling

NLP Tasks using Language Model

5
Source: https://demo.allennlp.org/semantic-role-labeling/MjQ1MjQxOA==

Semantic role labeling

NLP Tasks using Language Model

6
Image source: https://nlp.stanford.edu/projects/coref.shtml#:~:text=Coreference%20resolution%20is%20the%20task,question%20answering%2C%20and%20information%20extraction.

Coreference resolution

NLP Tasks using Language Model

7
Image source: https://towardsdatascience.com/named-entity-recognition-and-classification-with-scikit-learn-f05372f07ba2

Named entity recognition (NER)

NLP Tasks using Language Model

Text summarization

8
Image source: https://techcommunity.microsoft.com/t5/ai-customer-engineering-team/bootstrap-your-text-summarization-solution-with-the-latest/ba-p/1268809

https://techcommunity.microsoft.com/t5/ai-customer-engineering-team/bootstrap-your-text-summarization-solution-with-the-latest/ba-p/1268809

NLP Tasks using Language Model

9

Image source: https://google.github.io/seq2seq/

Machine translation

https://google.github.io/seq2seq/

NLP

10
Source: douyin

“NLP is the crown jewel of Artificial
Intelligence”.

It is very hard to make AI understand
underlying meaning of human language.

Among lots of problems, ambiguity is one of
NLP’s nightmares.

Outlines

Word2vec

Transformer

BERT

GPT

11

WORD2VEC

12

Meaning of a Word

13
Code source: Lecture 1, cs224n

Synonym (同义
词) of “good”

Hypernyms (上
位词) of “panda”

 How can computer know the meaning of a word?

 Use e.g. WordNet, a thesaurus containing lists of synonym sets and hypernyms (“is a”
relationships).

Meaning of a Word

Problems of using dictionary library:

Great as a resource but missing slight difference between words.

e.g. “proficient” is listed as a synonym for “good”. This is only correct in
some contexts.

Different meanings depending on the context.

Missing new meanings of words, or new created words.

e.g., badass, lmao, skr, kiki…

 Impossible to keep up-to-date!

Requires human labor to create and adapt.

14

Meaning of a Word

 In traditional NLP, we regard words as discrete symbols.

 Words can be represented by one-hot vectors:

Cat: [0,0,0,0,0,0,…,1,0,0]

Dog: [1,0,0,0,0,0,…,0,0,0]

Car: [0,0,0,0,1,0,…,0,0,0]

 The length of the vector equals to the size of the corpus (e.g. 500,000).

 Problem: the distance between any pair of words are 1, except itself.

 There is no natural notion of similarity for one-hot vectors.

 Solution: learn to encode similarity in the vectors themselves.

15

Word Vectors

 Build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts.

 Word vectors are sometimes called word embeddings or word representations.
They are a distributed representation.

 Word vectors with small distance have the close meaning.

Cat: [0.1,0.7,0.9,0.1,0.1]

Dog: [0.2,0.7,0.8,0.2,0.1]

Car: [0.9,0.1,0.5,0.6,0.8]

 Usually hundreds of dimensions.

 However, there is no label to train these word embeddings in a supervised manner.

 It is impossible to label the similarity between any two words.

16

Contextual Information

17
Image source: Lecture 1, cs224n

“Banking” is represented by its context words

 Distributional semantics: words that are used and occur in the same contexts tend to
purport similar meanings.

 “A word is characterized by the company it keeps” was popularized by J. R. Firth, an English linguist,
in the 1950s.

 When a word 𝑤 appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

 Use the many contexts of 𝑤 to build up a representation of 𝑤.

Word2vec

Idea:

Every word in a fixed vocabulary is represented by a dense
vector.

Go through each position 𝑡 in the text, which has

a center word 𝑐,

context words 𝑜.

Use the similarity of the word vectors for 𝑐 and 𝑜 to calculate
the probability of 𝑐 given 𝑜 (or vice versa).

Keep adjusting the word vectors to maximize this probability.
18

Word2vec

19
Image source: Lecture 1, cs224n

The authors proposed Skip-gram model to train word vectors.

Given the center word 𝑐, predict the context words 𝑜.

Word2vec

The objective function 𝐽(𝜃) is the negative log likelihood:

𝐽 𝜃 = −
1

𝑇
log 𝐿 𝜃 = −

1

𝑇

𝑡=1

𝑇

−𝑐≤𝑗≤𝑐,𝑗≠0

log 𝑝 𝑤𝑡+𝑗 𝑤𝑡; 𝜃 .

The probability is calculated by:

𝑝 𝑜 𝑐 =
exp(𝒘𝑜

′ 𝑇𝒘𝑐)

σ𝑢∈𝑉 exp(𝒘𝑢
′ 𝑇𝒘𝑐)

.

 It is nothing but inner product with softmax.

20

Given centerPredict context

21

Image source: Lecture 2, cs224n

Word2vec

The learnable representation is called embedding.

What is the difference between embedding and feature/
representation?

Feature / representation is produced by learnable parameters,
but embeddings themselves are learnable parameters.

22

Negative Sampling

The probability is calculated by:

𝑝 𝑜 𝑐 =
exp(𝒘𝑜

′ 𝑇𝒘𝑐)

σ𝑢∈𝑉 exp(𝒘𝑢
′ 𝑇𝒘𝑐)

.

Every time, we calculate the similarity between word
embedding of 𝑐 and all 𝑢 ∈ 𝑉.

 It is computational cost is very high.

We can simply sample a few random samples as the negative
samples for training.

23

Word2vec

24
Image source: https://mubaris.com/posts/word2vec/

We can also use the context words to predict the center word. This
model is called CBOW (Continuous Bag of Words).

Word Vectors

25
Image source: https://medium.com/@khulasaandh/word-embeddings-fun-with-word2vec-and-game-of-thrones-ea4c24fcf1b8

By using word vectors, we can “calculate their meaning”:

𝑤[′king′] ≈ 𝑤[′queen′] − 𝑤[′woman′] + 𝑤[′man′]

26

Image source: Lecture 2, cs224n

27

Source: http://projector.tensorflow.org/

Word2vec

28
Image source: https://mubaris.com/posts/word2vec/

 In essence, Word2vec uses supervised manner to train word vectors.

 The center word is the input, the context words are its labels.

XXX2vec

29

Follow this idea, any pair frequently occur in a set can be
represented by a vector:

Recommender system: item2vec, user2vec.

Graph: node2vec, edge2vec.

Social media: tweet2vec, emoji2vec.

Bioinformatics: protein2vec, dna2vec.

Chemistry: molecule2vec, atom2vec.

Finance: stock2vec, fund2vec, company2vec.

For more xxx2vec, check here.

https://apps.z.facebook.com/notes/%E5%8F%B0%E7%81%A3%E8%87%AA%E7%84%B6%E8%AA%9E%E8%A8%80%E8%99%95%E7%90%86%E8%88%87%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%E4%BA%A4%E6%B5%81%E7%A4%BE/65%E7%A8%AExxx2vec%E5%90%91%E9%87%8F%E5%8C%96%E6%8A%80%E8%A1%93%E6%95%B4%E7%90%86/322284105529741/

Atom2vec

30
Image source: Zhou, Quan, Peizhe Tang, Shenxiu Liu, Jinbo Pan, Qimin Yan, and Shou-Cheng Zhang. "Learning atoms for materials discovery." Proceedings of the National Academy of Sciences 115, no. 28 (2018): E6411-E6417.

Emoji2vec

31
Image source: Eisner, Ben, Tim Rocktäschel, Isabelle Augenstein, Matko Bošnjak, and Sebastian Riedel. "emoji2vec: Learning emoji representations from their description." arXiv preprint arXiv:1609.08359 (2016).

Train Word2vec by PyTorch

32
Code is modified from https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html

Use nn.Embedding for embedding loop-up.

33

Code is modified from https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html

34

Code is modified from https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html

35

Code is modified from https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html

Word Representation

Originally, we basically had only one representation of words:

E.g. Word2vec, GloVe, fastText.

These have two problems:

Always the same representation for a word regardless of the context in
which a word token occurs.

We just have one representation for a word, but words have different
aspects, including semantics, syntactic behavior, and register
/connotations.

36

ELMo

Combine pre-trained word token vectors or contextual word
vectors.

Learn word token vectors using long contexts not context
windows (here, whole sentence, could be longer).

Learn a deep bidirectional language model (biLM) and use all its
layers in prediction.

37

ELMo

38
Image source: https://www.mihaileric.com/posts/deep-contextualized-word-representations-elmo/

TRANSFORMER

39

Image source: https://www.ebay.com/p/1054996955

XXX is All You Need

40

???

Source: Google Scholar

Transformer

Recurrent models typically factor computation along the symbol
positions of the input and output sequences.

 i.e. either forward or backward.

It brings two problems:

Preclude parallelization within training examples.

Difficult to learn dependencies between distant positions.

41

Transformer

Thoroughly abandoned RNN or CNN achitecture.

Only use self-attention and feed forward neural network to
model contextual information.

Designed for machine translation by the encoder-decoder
achitecture, but now widely used as a basic component of many
NLP and CV tasks.

42

Transformer

43
Image source: https://jalammar.github.io/illustrated-transformer/

From a high-level look, it is nothing but an encoder-decoder
network.

Transformer

44
Image source: https://jalammar.github.io/illustrated-transformer/

The encoding component
is a stack of encoders.

 In the paper, it is 6.

The decoding component
is a stack of decoders of
the same number.

Transformer

45
Image source: https://jalammar.github.io/illustrated-transformer/

Transformer keeps the encoder-decoder attention, but replace
RNN layer by self-attention layer.

Self-Attention

46
Image source: https://jalammar.github.io/illustrated-transformer/

As is the case in NLP applications in general, we begin by turning
each input word into a vector using an embedding algorithm.

e.g. each word is embedded into a vector of size 512.

Self-Attention

47
Image source: https://jalammar.github.io/illustrated-transformer/

Each embedding flows through each of the two layers of the encoder.

There are dependencies between these paths in the self-attention layer.

Attention

48
Image source: Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Recall the encoder-decoder attention
architecture:

Use RNN to capture context information.

Use attention to assign weights from the
encoder hidden states to the decoder.

Self-Attention

49
Image source: https://jalammar.github.io/illustrated-transformer/

Self-attention is the weighted
representation of the target at
place of itself.

When the model is processing
the word “it”, self-attention
allows it to associate “it” with
“animal”.

RNN can also do this job, but
the correlation highly depends
on the distance.

Self-Attention

50
Image source: https://jalammar.github.io/illustrated-transformer/

Used for comparing with others

Used for being compared by others

Used for being weighted and output

Used for
transforming
from 𝑋 to 𝑞,
𝑘 and 𝑣.

So for each word vector, we transform it into a Query vector, a Key
vector, and a Value vector.

Self-Attention

51
Image source: https://jalammar.github.io/illustrated-transformer/

𝑄 and 𝐾 are used to calculate
attention weights, and 𝑉 is
used to apply those weights.

𝑄 is the vector for itself, and 𝐾
is the vector for others.

Self-Attention

52

𝑄 and 𝐾 represent central and context, which is similar to 𝑊
and 𝑊′ in Skipgram.

Self-Attention

It is also called dot-product attention:

Attention(𝑄, 𝐾, 𝑉) = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

When we calculate the self-attention
representation, we put all words into a
matrix:

53
Image source: https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention

54
Image source: https://jalammar.github.io/illustrated-transformer/

Multi-head attention expands
the model’s ability to focus
on different positions.

Each head uses different 𝑊𝑄,
𝑊𝐾 and 𝑊𝑉 , which are
randomly initialized.

Different attention heads can
be trained in parallel.

Multi-Head Attention

55
Image source: https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention

56
Image source: https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention

57
Image source: https://jalammar.github.io/illustrated-transformer/

Positional Encoding

58
Image source: https://jalammar.github.io/illustrated-transformer/

 Now, one problem is that we lose the information about the relative or absolute position of
the tokens in the sequence.

 He likes this movie because it doesn‘t have an overhead history. -> Positive.

 He doesn’t like this movie because it has an overhead history. -> Negative.

 Positional encoding helps the model determine the position of each word, or the distance
between different words in the sequence.

Positional Encoding

59
Image source: https://jalammar.github.io/illustrated-transformer/

 Positional encoding is fomulated as:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

where 𝑝𝑜𝑠 is the position, 𝑖 is the dimension index, 𝑑𝑚𝑜𝑑𝑒𝑙 is word embedding
dimension.

Encoder-Decoder Architecture

60
Image source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and
Illia Polosukhin. "Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.

Residual connections are used in both
encoder and decoder.

In the decoder, the self-attention layer
is only allowed to attend to earlier
positions in the output sequence,
which is called masked multi-head
attention.

In the encoder-decoder attention,
only 𝐾 and 𝑉 from the encoder are
used.

Encoder-Decoder Architecture

61
Image source: https://jalammar.github.io/illustrated-transformer/

Encoder-Decoder Architecture

62
https://jalammar.github.io/illustrated-transformer/

Encoder-Decoder Architecture

63
https://jalammar.github.io/illustrated-transformer/

Transformer Explainer

64
Source: https://poloclub.github.io/transformer-explainer/

Vision Transformer

65
Image source: https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

The Vision Transformer treats an input image as a sequence of patches,
akin to a series of word embeddings generated by an NLP Transformer.

https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Swin Transformer

66
Image source: Liu, Ze, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. "Swin transformer: Hierarchical vision transformer using shifted windows." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012-10022. 2021.

Challenges in adapting Transformer from language to vision:

large variations in the scale of visual entities and the high resolution of
pixels in images compared to words in text.

BERT

67

Image source: https://hero.fandom.com/wiki/Bert_(Sesame_Street)

SOTA on 11 NLP tasks!

BERT

BERT is a pre-training framework using deep bidirectional
transformers for language understanding.

It uses the idea of self-supervised learning, rather than training
on any specific NLP task.

After we obtain the BERT pre-trained model, we can fine-tune it
for a specific NLP task.

68

BERT Model Architecture

69
Image source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

BERT’s model architecture is a multi-layer bidirectional Transformer encoder.

 The input is word embedding and output is context sensitive word
representation.

 Just like ELMo. But ELMo is a task-specific model, rather than a pre-trained model.

Input representation

70
Image source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

 Positional embeddings are learnable, rather than fixed magic number as in the
Transformer paper.

 Each input sequence is a pair of sentences, separated by the token [SEP]. It
adopted two learnable embeddings to each sentence.

 [CLS] is the a special classification embedding for the first token of every
sequence.

Pre-Training Task 1: Masked LM

 Mask some percentage of the input tokens at random, and then predicting only those
masked tokens.

 Use [MASK] token to replace 15% tokens randomly, and use the real token as the
label to make it predict.

 Howerver, the [MASK] token is never seen during fine-tuning. The authors proposed
the following strategy:

 80% of the time: Replace the word with the [MASK] token.

 e.g., my dog is hairy → my dog is [MASK].

 10% of the time: Replace the word with a random word.

 e.g., my dog is hairy → my dog is apple.

 10% of the time: Keep the word unchanged. The purpose of this is to bias the representation
towards the actual observed word.

 e.g., my dog is hairy → my dog is hairy.

71

Pre-Training Task 2: Next Sentence Prediction

 Make the model understand the relationship between two text sentences.

 Choose the sentences A and B for each pre-training example.

 50% of the time B is the actual next sentence that follows A.

 50% of the time it is a random sentence from the corpus.

 Example:

 Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon

[MASK] milk [SEP]

 Label = IsNext

 Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight
##less birds [SEP]

 Label = NotNext

72

Pre-Train and Fine-Tune

73
Code source: Lecture 14, cs224n

74

Image source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

GPT

75

BERT v.s. GPT

76
Image source: https://www.youtube.com/watch?v=ewjlmLQI9kc

https://www.youtube.com/watch?v=ewjlmLQI9kc

History of GPT

77

2018 20202019 2022.11 2023 ?2022.3

GPT-1: Improving Language
Understanding by Generative
Pre-Training

Keyword: unsupervised pre-training,
supervised fine-tuning, auxiliary objective

GPT-2: Language Models are
Unsupervised Multitask
Learners

GPT-3: Language Models are
Few-Shot Learners

Keyword: multi-task

Keyword: few-shot,
one-shot, zero-shot

GPT-4

InstructGPT: Training language
models to follow instructions
with human feedback

Keyword: instruct
learning, labeler-written
prompts, reinforcement
learning from human
feedback

ChatGPT: Optimizing
Language Models for Dialogue

past new future

Source: ChatGPT的过去、现在与未来,冯骁骋,哈尔滨工业大学/社会计算与信息检索研究中心

GPT-1

78
Image source: Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. "Improving language understanding by generative pre-training." (2018).

GPT Keyword: unsupervised pre-training, supervised fine-tuning, auxiliary objective

GPT-2

Previously, NLP tasks, such as question answering, machine
translation, reading com- prehension, and summarization, are
typically approached with supervised learning on task-specific
datasets.

GPT-2 is trained on a new dataset of millions of webpages called
WebText without any explicit supervision.

79

GPT-2

Ability: Zero-shot or one-shot：

Zero-shot: use summarization as an example

Input: original text + “TL; DR”

Output: summary

One-shot: use translation as an example

Input: “English sentence1 = French sentence1” + “English
sentence2 = ”

Output: “French sentence2”

80

One-shot is not
supervised information.
It is not involved into
the training process

GPT-3

Pre-trained model with In-context learning (few-shot, one-shot,
zero-shot) is becoming competitive with prior state-of-the-art
fine-tuning approaches.

81

Source: ChatGPT的过去、现在与未来,冯骁骋,哈尔滨工业大学/社会计算与信息检索研究中心

InstructGPT

 GPT-3 is good at in-context learning tasks, but these models are not aligned with their users.

 Can only handle traditional NLP tasks, but not human interaction.

 Instruction Tuning

 Unify tasks in the form of Prompts.

 Fine-tune the language model.

 The model can handle unseen tasks.

82

Image source: https://docs.cohere.com/docs/prompt-engineering

https://docs.cohere.com/docs/prompt-engineering

InstructGPT

83
Image source: Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang et al. "Training language models to follow instructions with human feedback." Advances in Neural Information Processing Systems 35 (2022): 27730-27744.

ChatGPT v.s. InstructGPT

ChatGPT can generate more detailed responses

This might stem from the annotators' preference for "more detailed
responses" during the training reward model process => a preference
for verbosity.

ChatGPT excels more in multi-turn dialogue formats

This might be due to the multi-turn dialogue data annotated by the
annotators during the instruction fine-tuning process.

ChatGPT is better at capturing COT and long-term dependencies
in multi-turn dialogues

This could be attributed to ChatGPT's initialization model.

84

85

Image source: Yang, Jingfeng, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia Hu. "Harnessing the power of llms in practice: A survey on chatgpt and beyond." arXiv preprint arXiv:2304.13712 (2023).

Times of NLP Have Changed…

86

Input
Lexical

analysis
Information
extraction

…
Specific

task
Output

Task Prompt+Input LLMs Output

Input Basic model

Lexical
analysis

Information
extraction

…

Specific task

Output

Output

Output

Output

Before
2015

2015-2022

2022-

Image source:大型语言模型的科学挑战,邱锡鹏

Times of NLP Have Changed…

87

Divided by task

MT

QA

Dialogue

Pre-Training

Supervised FT

Reinforcement
learning from
human feedback

Summarization

Divided by process

Image source:大型语言模型的科学挑战,邱锡鹏

Conclusion

After this lecture, you should know:

Why do we need word embedding?

How to generate xxx2vec?

Why context information is important can how to incorporate it
into word embedding?

What is multi-head self-attention?

What is a pre-trained language model and how to use it?

88

Suggested Reading

 Word2vec paper: Distributed representations of words and phrases and their
compositionality

 ELMo paper: Deep contextualized word representations

 Transformer paper: Attention is all you need

李沐: Transformer论文逐段精读

 BERT paper: Bert: Pre-training of deep bidirectional transformers for language
understanding

 Excellent Transformer tutorial with notebook

 Illustrated Transformer

89

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and
https://arxiv.org/abs/1802.05365
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://www.bilibili.com/video/BV1pu411o7BE?from=search&seid=14364791043934797327&spm_id_from=333.337.0.0
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://jalammar.github.io/illustrated-transformer/

Assignment 3

90

Assignment 3 will be released soon. The deadline is 18:00, 11th
November.

Thank you!

91

Any question?

Don’t hesitate to send email to me for asking questions and
discussion.☺

	Slide 0: DEEP LEARNING
	Slide 1: NLP Tasks using Language Model
	Slide 2: NLP Tasks using Language Model
	Slide 3: NLP Tasks using Language Model
	Slide 4: NLP Tasks using Language Model
	Slide 5: NLP Tasks using Language Model
	Slide 6: NLP Tasks using Language Model
	Slide 7: NLP Tasks using Language Model
	Slide 8: NLP Tasks using Language Model
	Slide 9: NLP Tasks using Language Model
	Slide 10: NLP
	Slide 11: Outlines
	Slide 12: Word2Vec
	Slide 13: Meaning of a Word
	Slide 14: Meaning of a Word
	Slide 15: Meaning of a Word
	Slide 16: Word Vectors
	Slide 17: Contextual Information
	Slide 18: Word2vec
	Slide 19: Word2vec
	Slide 20: Word2vec
	Slide 21
	Slide 22: Word2vec
	Slide 23: Negative Sampling
	Slide 24: Word2vec
	Slide 25: Word Vectors
	Slide 26
	Slide 27
	Slide 28: Word2vec
	Slide 29: XXX2vec
	Slide 30: Atom2vec
	Slide 31: Emoji2vec
	Slide 32: Train Word2vec by PyTorch
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Word Representation
	Slide 37: ELMo
	Slide 38: ELMo
	Slide 39: Transformer
	Slide 40: XXX is All You Need
	Slide 41: Transformer
	Slide 42: Transformer
	Slide 43: Transformer
	Slide 44: Transformer
	Slide 45: Transformer
	Slide 46: Self-Attention
	Slide 47: Self-Attention
	Slide 48: Attention
	Slide 49: Self-Attention
	Slide 50: Self-Attention
	Slide 51: Self-Attention
	Slide 52: Self-Attention
	Slide 53: Self-Attention
	Slide 54: Multi-Head Attention
	Slide 55: Multi-Head Attention
	Slide 56: Multi-Head Attention
	Slide 57: Multi-Head Attention
	Slide 58: Positional Encoding
	Slide 59: Positional Encoding
	Slide 60: Encoder-Decoder Architecture
	Slide 61: Encoder-Decoder Architecture
	Slide 62: Encoder-Decoder Architecture
	Slide 63: Encoder-Decoder Architecture
	Slide 64: Transformer Explainer
	Slide 65: Vision Transformer
	Slide 66: Swin Transformer
	Slide 67: BERT
	Slide 68: BERT
	Slide 69: BERT Model Architecture
	Slide 70: Input representation
	Slide 71: Pre-Training Task 1: Masked LM
	Slide 72: Pre-Training Task 2: Next Sentence Prediction
	Slide 73: Pre-Train and Fine-Tune
	Slide 74
	Slide 75: GPT
	Slide 76: BERT v.s. GPT
	Slide 77: History of GPT
	Slide 78: GPT-1
	Slide 79: GPT-2
	Slide 80: GPT-2
	Slide 81: GPT-3
	Slide 82: InstructGPT
	Slide 83: InstructGPT
	Slide 84: ChatGPT v.s. InstructGPT
	Slide 85
	Slide 86: Times of NLP Have Changed…
	Slide 87: Times of NLP Have Changed…
	Slide 88: Conclusion
	Slide 89: Suggested Reading
	Slide 90: Assignment 3
	Slide 91: Thank you!

